當前位置:首頁 > 模擬 > ADI
[導讀]系統架構師和電路硬件設計人員針對最終應用(如測試和測量、工業自動化、醫療健康或航空航天和防務)需求,往往要耗費大量研發(R&D)資源來開發高性能、分立式精密線性信號鏈模塊,以實現測量和保護、調節和採集或合成和驅動。

數據採集系統級挑戰

系統架構師和電路硬件設計人員針對最終應用(如測試和測量、工業自動化、醫療健康或航空航天和防務)需求,往往要耗費大量研發(R&D)資源來開發高性能、分立式精密線性信號鏈模塊,以實現測量和保護、調節和採集或合成和驅動。本文將重點討論精密數據採集子系統,如圖1所示。

電子行業瞬息萬變,隨着對研發預算和上市時間(TTM)的控制日益嚴苛,用於構建模擬電路並製作原型來驗證其功能的時間也越來越少。在散熱性能和印刷電路板(PCB)密度受限的情況下,硬件設計人員需要通過尺寸不斷縮小的複雜設計提供先進的精密數據轉換性能和更高的魯棒性。通過系統級封裝(SiP)技術實現的異構集成,繼續推動電子行業朝着更高密度、更多功能、更強性能和更長的平均無故障時間的趨勢發展。本文將介紹ADI公司如何利用異質集成改變精密轉換競爭環境,並提供對應用產生重大影響的解決方案。

圖1.高級數據採集系統框圖

系統設計人員面臨諸多挑戰,不僅需要為最終原型選擇器件並優化設計,還要滿足驅動ADC輸入、保護ADC輸入以使其免受過壓事件影響、最大限度地降低系統功耗、用低功耗微控制器和/或數字隔離器實現更高的系統吞吐量等技術要求。隨着OEM更多地關注系統軟件和應用,以打造獨特的系統解決方案,他們也將更多的資源分配給軟件開發,而不是硬件開發。這樣就增加了硬件開發的壓力,需要進一步減少設計迭代。

開發數據採集信號鏈的系統設計人員通常需要高輸入阻抗才能與各種傳感器直接接口,這些傳感器可能具有變共模電壓和單極或雙極單端或差分輸入信號。我們通過圖2全面分析一下使用分立式器件實現的典型信號鏈,從而瞭解系統設計人員的一些主要技術難點。圖中所示為精密數據採集子系統的關鍵部分,其中20 V p-p儀表放大器輸出施加於全差分放大器(FDA)的同相輸入。此FDA提供必要的信號調理,包括電平轉換、信號衰減,輸出擺幅在0 V和5 V之間,輸出共模電壓為2.5 V,相位相反,從而為ADC輸入提供10 V p-p差分信號,以最大限度地擴大其動態範圍。儀表放大器採用±15 V的雙電源供電,而FDA由+5 V/–1 V供電,ADC由5 V電源供電。用反饋電阻(RF1 = RF2)與增益電阻(RG1 = RG2)的比值,將FDA增益設置為0.5。FDA的噪聲增益(NG)定義為:

其中β1和β2為反饋係數:

圖2.典型數據採集信號鏈的簡化原理圖

本節將探討FDA周圍的電路不平衡(即β1 ≠ β2)或反饋和增益電阻(RG1、RG2、RF1、RF2)的不匹配對SNR、失真、線性度、增益誤差、偏移和輸入共模抑制比等關鍵技術參數有何影響。FDA的差分輸出電壓取決於VOCM,因此,當反饋係數β1和β2不相等時,輸出幅度或相位的任何不平衡都會在輸出端產生不良共模成分,這些共模成分以噪聲增益放大後,會導致FDA的差分輸出中存在冗餘噪聲和失調。因此,增益/反饋電阻的比值必須匹配。換言之,輸入源阻抗和RG2 (RG1)的組合應匹配(即β1 = β2),以避免信號失真和各輸出信號的共模電壓失配,並防止FDA的共模噪聲增加。要抵消差分失調並避免輸出失真,可添加一個與增益電阻(RG1)串聯的外部電阻。不僅如此,增益誤差偏移還受電阻類型的影響,例如薄膜、低温度係數電阻等,而在成本和電路板空間受限的情況下尋找匹配的電阻並不容易。

此外,由於額外成本和PCB上的空間有限,很多設計人員在創建單數雙極性電源時遇到不少麻煩。設計人員還需要仔細選擇合適的無源器件,包括RC低通濾波器(放在ADC驅動器輸出和ADC輸入之間)以及用於逐次逼近寄存器(SAR) ADC動態參考節點的去耦電容。RC濾波器有助於限制ADC輸入端噪聲,並減少來自SAR ADC輸入端容性DAC的反衝。應選擇C0G或NP0型電容和合理的串聯電阻值,使放大器保持穩定並限制其輸出電流。最後,PCB佈局對於保持信號完整性以及實現信號鏈的預期性能至關重要。

簡化客户的設計進程

許多系統設計人員最終都是為相同的應用設計不同的信號鏈架構。然而,並非所有設計都適用同一種信號鏈,因此ADI公司提供具有先進性能的完整信號鏈µModule®解決方案,專注於信號鏈、信號調理和數字化的通用部分,以此彌補標準分立器件和高度集成的客户特定IC之間的缺口,幫助解決主要難點。 ADAQ4003是SiP解決方案,較好地兼顧了降低研發成本和縮減尺寸兩方面因素,同時加快了原型製作。

ADAQ4003 µModule精密數據採集解決方案採用ADI的先進SiP技術,將多個通用信號處理和調理模塊以及關鍵無源器件集成到單個設備中(見圖5)。ADAQ4003包括低噪聲、FDA、穩定的基準電壓源緩衝器和高分辨率18位、2 MSPS SAR ADC。

ADAQ4003通過將元件選擇、優化和佈局從設計人員轉移到器件本身,簡化了信號鏈設計,縮短了精密測量系統的開發週期,並解決了上一節討論的所有主要問題。FDA周圍的精密電阻陣列使用ADI專有的iPassives®技術構建,可解決電路不平衡問題,減少寄生效應,有助於實現高達0.005%的出色增益匹配,並優化漂移性能(1 ppm/°C)。與分立式無源器件相比,iPassives技術還具有尺寸優勢,從而最大限度地減少了與温度相關的誤差源,並減少了系統級校準工作。FDA提供快速建立和寬共模輸入範圍以及精確的可配置增益選項(0.45、0.52、0.9、1或1.9)性能,允許進行增益或衰減調節,支持全差分或單端到差分輸入。

ADAQ4003在ADC驅動器和ADC之間配置了一個單極點RC濾波器,旨在最大限度地減少建立時間,增加輸入信號帶寬。此外為基準電壓節點和電源提供了所有必要的去耦電容,以簡化物料清單(BOM)。ADAQ4003還內置一個配置為單位增益的基準電壓緩衝器,用於驅動SAR ADC基準電壓節點和相應去耦電容的動態輸入阻抗,實現優化性能。REF引腳上的10 µF是在位判斷過程中幫助補充內部電容DAC電荷的關鍵要求,對於實現峯值轉換性能至關重要。與許多傳統SAR ADC信號鏈相比,通過內置基準電壓緩衝器,由於基準電壓源驅動高阻抗節點,而不是SAR電容陣列的動態負載,因此用户可以實現功耗更低的基準電壓源。而且可以靈活選擇與所需模擬輸入範圍匹配的基準電壓緩衝器輸入電壓。

小尺寸簡化了PCB佈局並支持高通道密度

與傳統分立式信號鏈相比(如圖3所示),ADAQ4003的7 mm × 7 mm BGA封裝尺寸至少縮減了4倍,可在不犧牲性能的情況下實現小型儀器儀表。

圖3.ADAQ4003 µModule器件與分立信號鏈解決方案的尺寸對比

印刷電路板佈局對於保持信號完整性以及實現信號鏈的預期性能至關重要。ADAQ4003的模擬信號位於左側,數字信號位於右側,這種引腳排列可以簡化佈局。換言之,這樣設計人員就能夠將敏感的模擬部分和數字部分保持分離,並限制在電路板的一定區域內,避免數字和模擬信號交叉以減輕輻射噪聲。ADAQ4003集成了用於基準電壓源(REF)和電源(VS+、VS−、VDD和VIO)引腳的所有必要的(低等效串聯電阻(ESR)和低等效串聯電感(ESL))去耦陶瓷電容。這些電容在高頻時會提供低阻抗接地路徑,以便處理瞬態電流。

無需外部去耦電容,沒有這些電容,也就不會產生已知的性能影響或任何EMI問題。通過移除用於形成板載供電軌(REF、VS+、VS−、VDD和VIO)的基準電壓源和LDO穩壓器輸出端的外部去耦電容,在ADAQ4003評估板上可以驗證這一性能影響。圖4顯示了不論使用還是移除外部去耦電容,雜散噪聲都被隱藏在低於−120 dB的本底噪聲下。ADAQ4003採用小尺寸設計,可實現高通道密度PCB佈局,同時減輕了散熱挑戰。但是,各器件的佈局和PCB上各種信號的路由至關重要。輸入和輸出信號採用對稱路由,同時電源電路遠離單獨電源層上的模擬信號路徑,並採用盡可能寬的走線,對於提供低阻抗路徑、減小電源線路上的毛刺噪聲影響以及避免EMI問題尤其重要。

圖4.提供短路輸入ADAQ4003 FFT,在移除各個供電軌的外部去耦電容前後性能保持不變

使用高阻抗PGIA驅動ADAQ4003

如前所述,通常需要高輸入阻抗前端才能直接與各種類型的傳感器連接。大多數儀器儀表和可編程增益儀表放大器(PGIA)具有單端輸出,無法直接驅動全差分數據採集信號鏈。但是,LTC6373 PGIA提供全差分輸出、低噪聲、低失真和高帶寬,可直接驅動ADAQ4003而不影響精密性能,因此適合許多信號鏈應用。 LTC6373通過可編程增益設置(使用A2、A1和A0引腳)在輸入端和輸出端實現直流耦合。

在圖5中,LTC6373採用差分輸入至差分輸出配置和±15 V雙電源。根據需要,LTC6373也可採用單端輸入至差分輸出配置。LTC6373直接驅動ADAQ4003,其增益設置為0.454。LTC6373的VOCM引腳接地,其輸出擺幅在−5.5 V和+5.5 V之間(相位相反)。ADAQ4003的FDA對LTC6373的輸出進行電平轉換以匹配ADAQ4003所需的輸入共模,並提供利用ADAQ4003 μModule器件內ADC最大2倍VREF峯值差分信號範圍所需的信號幅度。圖6和圖7顯示使用LTC6373的各種增益設置的SNR和THD性能,而圖8顯示圖5所示電路配置的±0.65 LSB/±0.25 LSB的INL/DNL性能。

圖5.LTC6373驅動ADAQ4003(增益 = 0.454,2 MSPS)

圖6.SNR與LTC6373增益設置,LTC6373驅動ADAQ4003(增益 = 0.454,2 MSPS)

圖7.THD與LTC6373增益設置,LTC6373驅動ADAQ4003(增益 = 0.454,2 MSPS)

圖8.INL/DNL性能,LTC6373(增益 = 1)驅動ADAQ4003(增益 = 0.454)

ADAQ4003 µModule應用案例:ATE

本節將重點介紹ADAQ4003如何適用於ATE的源表(SMU)和設備電源。這些模塊化儀器儀表用於測試快速增長的智能手機、5G、汽車和物聯網市場的各種芯片類型。這些精密儀器儀表具有拉電流/灌電流功能,每個處理程控電壓電流調節的通道都需要一個控制環路,並且它們需要高精度(特別是良好的線性度)、速度、寬動態範圍(用於測量µA/µV信號電平)、單調性和小尺寸,以容納同時增加的通道數。ADAQ4003提供出色的精密性能,可減少終端系統的器件數量,並允許在電路板空間受限的情況下提高通道密度,同時減輕了此類直流測量可擴展測試儀器儀表的校準工作和散熱挑戰。ADAQ4003的高精度與快速採樣速率相結合,可降低噪聲,並且無延遲,因此非常適合控制環路應用,可提供出色的階躍響應和快速建立時間,從而提高測試效率。ADAQ4003通過消除因自身漂移和電路板空間限制而需要在儀器儀表上分配基準電壓的緩衝區,幫助減輕了設計負擔。此外,漂移性能和元件老化決定測試儀器儀表的精度,因此ADAQ4003的確定性漂移降低了重新校準的成本,縮短了儀器儀表的停機時間。ADAQ4003滿足這些要求,使儀器儀表能夠測量較低的電壓和電流範圍,有助於針對各種負載條件優化控制環路,從而明顯改善儀器儀表的工作特性、測試效率、吞吐量和成本。這些儀器儀表的高測試吞吐量和較短的測試時間將幫助最終用户降低測試成本。SMU高級框圖如圖9所示,相應的信號鏈如圖5所示。

圖9.源表簡化框圖

高吞吐速率支持ADAQ4003的過採樣,從而實現較低的有效值噪聲並可在寬帶寬範圍內檢測到小振幅信號。對ADAQ4003進行4倍過採樣可額外提供1位分辨率(這是因為ADAQ4003提供了足夠的線性度,如圖8所示),或增加6 dB的動態範圍,換言之,由於此過採樣而實現的動態範圍改進定義為:ΔDR = 10 × log10 (OSR),單位dB。ADAQ4003的典型動態範圍在2 MSPS時為100 dB,對於5 V基準電壓源,其輸入對地短路。因此,ADAQ4003在1.953 kSPS輸出數據速率下進行1024倍過採樣時,它提供約130 dB的出色動態範圍,增益為0.454和0.9,可以精確地檢測出幅度極小的µV信號。圖10顯示了ADAQ4003在各種過採樣速率和1 kHz及10 kHz輸入頻率下的動態範圍和SNR。

圖10.ADAQ4003各種輸入頻率下的動態範圍以及SNR與過採樣速率(OSR)

圖11.使用信號鏈µModule技術降低總擁有成本

結論

本文介紹了與設計精密數據採集系統相關的一些重要方面和技術挑戰,以及ADI公司如何利用其線性和轉換器領域知識開發高度差異化的ADAQ4003信號鏈µModule解決方案,來解決一些棘手的工程設計問題。ADAQ4003能夠減輕工程設計工作,如器件選擇和構建可投入量產的原型,使系統設計人員能夠更快地為最終客户提供出色的系統解決方案。ADAQ4003 µModule器件出色的精度性能和小尺寸對各種精密數據轉換應用頗具實用價值,具體應用包括自動化測試設備(SMU、DPS)、電子測試和測量(阻抗測量)、醫療健康(生命體徵監測、診斷、成像)和航空航天(航空)等,以及一些工業用途(機器自動化輸入/輸出模塊)。ADAQ4003等μModule解決方案可顯著降低系統設計人員的總擁有成本(如圖11所示的各項),降低PCB組裝成本,通過提高批次產量增強生產支持,支持可擴展/模塊化平台的設計重用,還簡化了最終應用的校準工作,同時加快了上市時間。

換一批

延伸閲讀

[ADI] µModule數據採集解決方案可減輕各種精密應用的工程設計挑戰

µModule數據採集解決方案可減輕各種精密應用的工程設計挑戰

數據採集系統級挑戰 系統架構師和電路硬件設計人員針對最終應用(如測試和測量、工業自動化、醫療健康或航空航天和防務)需求,往往要耗費大量研發(R&D)資源來開發高性能、分立式精密線性信號鏈模塊,以實現測量和保護、調節和採集或...

關鍵字: Module 數據採集 ADAQ4003

[亞德諾半導體] 深入分析來自精密數據採集信號鏈的噪聲!

免責聲明:本文內容由21ic獲得授權後發佈,版權歸原作者所有,本平台僅提供信息存儲服務。文章僅代表作者個人觀點,不代表本平台立場,如有問題,請聯繫我們,謝謝!

關鍵字: 噪聲 ADC 數據採集

[ADI] ADI公司電路筆記——適用於IEPE傳感器的24位數據採集系統

ADI公司電路筆記——適用於IEPE傳感器的24位數據採集系統

評估和設計支持 電路評估板 IEPE傳感器DAQ測量板(EVAL-CN0540- ARDZ) 設計和集成文件 原理圖、佈局文件、物料清單、軟件 電路功能與優勢 圖1所示的參考設計是一款高分辨率...

關鍵字: ADI IEPE傳感器 數據採集

[ADI] 一種面向極端高温環境的高可靠精密數據採集與控制平台

一種面向極端高温環境的高可靠精密數據採集與控制平台

簡介 在許多惡劣環境系統中,一個不斷增長的趨勢是高精密電子器件離高温區域越來越近。這一趨勢背後有多個推動因素,在能源勘探、航空航天、汽車、重工業和其他終端應用中都有體現。1 例如,在能源勘探領域,環境温度增幅為深度的函數,相關設...

關鍵字: 硬件架構 ADI 數據採集

[ADI] 輕鬆構建交流和直流數據採集信號鏈

輕鬆構建交流和直流數據採集信號鏈

簡介 模數轉換器(ADC)中的採樣會產生混疊和電容反衝問題,為此設計人員使用濾波器和驅動放大器來解決,但這又帶來了一系列相關挑戰。尤其是在中等帶寬應用中,實現精密直流和交流性能面臨挑戰,設計人員最終不得不降低系統目標。 本文...

關鍵字: 信號鏈 ADI 數據採集

ADI

300 篇文章

關注

發佈文章

技術子站

關閉